Streams Processing

Principal Component Analysis: Linear Algebra



Dimensionality reduction

e Linear
* Principal Component Analysis
 Matrix sketching
e Compressed sensing
 Non-linear
e Kernel PCA

* |sometric mapping



PCA

Linear Algebra Statistics

Change of basis Probability density estimation

Optimization

Minimization of the reconstruction
error considering a low-rank model



Example

Unstrained length

ldeal spring mass system of the spring
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Example

Displacement

Time ¢

ldeal spring mass system

x=0misthe
equilibrium
position of
the object.

http://demo.webassign.net/ebooks/cj6demo/pc/c10/read/main/c10x10_1.htm



Example

Displacement

The motion equation is an
explicit function of time, In
one variable, I

Time ¢

x=0mis the
equilibrium
position of
the object.

http://demo.webassign.net/ebooks/cj6demo/pc/c10/read/main/c10x10_1.htm



Example

Assume we are ignorant experimenters

v

We know nothing about the IL\\\\\\\‘ _/H’f
motion laws of an ideal spring |

and mass system “— \\\\\\~ <

Unstrained length
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But we want to study the motion of the ball, learning from data



Example

We are ignorant
experimenters: we don'’t
know the X,y,z axis

So, we install randomly 3
cameras to measure the
ball’s position

At 120Hz, each camera
records an image from which
we extract a 2D position of
the ball (a projection)

Unstrained lengt
of the spring
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https://goo.gl/EMQpzy

Example

We record with the cameras for several minutes...

camera B camera C

camera A
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From the example to
processing Big Data

In general, we don’t know which data are redundant or which features
best reflect the underlying process we want to uncover

Also, real world contaminates our dataset with noise

This example illustrates what people working with data face everyday



Our dataset

We record 10mn

(t)
(t)
(t)
yp(t) 10 x 60 x 120 = 72.000
(t)
(t)




Choice of basis and data
collection

Point (2,4) = 4 units up and 2 units _________ _________ _________ _________
to the left A

_________________________________________________________________________________________________
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_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

_________________________________________________________________________________________________

The basis we use to represent our data is a consequence of
the method we used to collect our data



Choice of basis and data
collection

Standard basis for a Euclidean Another possible basis, for
space of dim m: the set of unit Euclidean 2D:

vectors pointing in the direction of

the Cartesian coordinate system

"bi] (1007 v3 1) (1 -v3)
b, 01 -0 2 72/)7\2 2
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A linear subspace basis is a linear combination of other basis: P X = Y



Key assumption: linearity

Is there another linear combination of the current basis that better
expresses our dataset?

PCA powerful assumption: Linearity, restricting the set of potential bases...



LA refresher: change of
basis

|
h<

PX

P transforms Xinto Y

P is a rotation and a stretch (if not orthonormal)

The rows of P are the set of new basis vectors for the columns of X:

P1X;

Yi the dot products of the rows of P and the ith column of X

| PmXi_



Questions

What is the best way to re-express X?

What is a good basis P?

But first, what features would we like to see in our Y?



High SNR: precise measurement

Low SNR: noisy data

We assume interesting dynamics occur on the direction of larger
variance (high SNR)

As the motion of the ball is in a straight line, we assume the perpendicular
direction to the line of best fit corresponds to noise

Each camera records 2 variables. Are they really necessary?



Redundancy

In the spring example three sensors capture the same information
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low redundancy high redundancy
Dimensionality reduction: If we can (.CEA, QUB) If Aand B are close
compute one variable from the other we
should keep the more concise (CUA, fA) using different units

representation.



Covariance matrix

1
X with zero mean: Cxy = XX

n

Important properties:

Square symmetric matrix mx m

Diagonal contains the variances for each feature. Large variances
are interesting structure

Off-diagonal contains covariance between different features.
Large variances are redundancy



Covariance matrix

Goals of PCA:

Minimize redundancy, measured by the magnitude of the covariance;

Maximize the signal, measured by the variance.



Diagonalize the covariance
matrix

Our ideal covariance matrix is PX =Y
diagonal. Our goals translate into
finding a change of basis that returns a 1
re_presentatlon.of the data with CY _ —YYT
diagonal covariance n

= PCx P!

The rows of the orthonormal P are the principal components



Solving PCA with EVD

EVD: Any symmetric matrix can be diagonalized A= EDE?L
D is diagonal and E’s columns are the eigenvectors of A

We select the matrix P to be a matrix where each row
is an eigenvector of C'x P = ET

With this selection and using the fact that the inverse of an orthogonal
matrix is its transpose

Cy =D



Solving PCA with SVD

X =Uuxv?’

Any arbitrary matrix can be written as the product of orthogonal, diagonal, orthogonal
V spans the column space of X, so the columns of V are the principal components of X

In julia, do

A=1T[1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

U, S, V = svd(A)



Quick Summary of PCA

1. Organize data as an m X n matrix, where m is the number
of measurement types and » is the number of samples.

2. Subtract off the mean for each measurement type.

3. Calculate the SVD or the eigenvectors of the covariance.







Assumptions

1. Linearity
2. Large variances have important structure
3. The principal components are orthogonal



